qPCR based multipathogen detection for Salmonella Paratyphi "A" and Vibrio cholerae from wastewater samples

Dilip Abraham, Venkata Raghava Mohan, Blossom Benny Sam, Nirmal Kumar, Raju Ravi

Published: 2024-07-20 DOI: 10.17504/protocols.io.6qpvr8m8plmk/v1

Abstract

The following protocol is optimized for the detection of Salmonella Paratyphi A and Vibrio cholerae using multiplex qPCR assays from TNA extracted from environmental samples (wastewater samples). Total Nucleic Acid (TNA) extracted from the pellet particles is used as template in a real-time PCR assay which uses primer-probes specific for Salmonella Paratyphi A or Vibrio cholerae gene targets. Three different multiplex PCR assays were designed following standardization and validation of the primer probe combinations.

Before start

Ensure that the fluorescent dye used for TaqMan probes is compatible with the machine being used and properly calibrated for it.

Steps

Primer-Probe panel

1.

The following primers and probes are employed for the detect Salmonella Paratyphi A and Vibrio cholerae specific gene targets.

1.1.

PCR 1: Salmonella Paratyphi A (SPA2308) and V. cholerae ctxA PCR panel

ABC
TARGETPRIMERSSEQUENCES 5' TO 3'
ctxAForwardTCCGGAGCATAGAGCTTGGA
ReverseTCGATGATCTTGGAGCATTCC
Probe[CY5] - CCGTGGATTCATCATGCACCGC - [BHQ2]
SPA2308ForwardACGATGATGACTGATTTATCGAAC
ReverseTGAAAAGATATCTCTCAGAGCTGG
Probe[FAM] - CCCATACAATTTCATTCTTATTGAGAATGCGC - [BHQ1]

Table1: SPA and ctxA Primer and probe sequences. Fluorescent dyes and quenchers are shown in square brackets.

1.2.

PCR 2: Vibrio cholerae _1 PCR panel

ABC
TARGETPRIMERSSEQUENCES 5' TO 3'
HF183ForwardATCATGAGTTCACA GTCCG
ReverseCTTCCTCTCAGAACCCCTATCC
Probe[FAM] - CTAATGGAACGCATCCC - [BHQ1]
wbfO139ForwardAGAAGCCAGTCGCAGTAAAG
ReverseTCGCCATCTTCCAGCATAAA
Probe[TAMRA] - TGGTGGTACAGCTTAGCCGCATTA - [BHQ2]
tcpA classicForwardGCGTAATGCAGCAGCTAATAAA
ReverseTATGGGAACATATCACCGACAC
Probe[JOE] - ATGGTCTGACACAGGCTCAATGCA - [BHQ1]

Table2: Vibrio cholerae_1 PCR Primer and probe sequences. Fluorescent dyes and quenchers are shown in square brackets.

1.3.

PCR 3: Vibrio cholerae _2 PCR panel

ABC
TARGETPRIMERSSEQUENCES 5' TO 3'
OmpWForwardTCAATGATAGCTGGTTCCTCAAC
ReverseCGATGATAAATACCCAAGCATTGA
Probe[JOE]TGGTATGCCAATATTGAAACAACG[BHQ1]
wbeO1ForwardGTTGAGAAGGGCGGTCTAATAA
ReverseTGTCTGGTACTTGAGTTGGTAAG
Probe[FAM] - TGCCTCAGCAATGGA - [BHQ1]
tcpA EltorForwardATCCTTTCACTGGTACAGCTATG
ReverseGTCAAGCCACCGACTGTAAT
Probe[TAMRA]- ACGAAACTCTGCAGCGAATAAAGC-[BHQ2]

Table3: Vibrio cholerae_2 PCR Primer and probe sequences. Fluorescent dyes and quenchers are shown in square brackets.

Primer-probe reconstitution

2.

To reconstitute the lyophilized primers/probes, use the nmole information on the specification sheet received with primers/probes.

2.1.

Multiply nmol value by 10 to get the required volume of Nuclease Free Water (NFW) needed to reconstitute the lyophilized primer/probes.

Ex: For a primer with 30 nmoles, to make 100micromolar (µM) stock solution:

30 nmol x 10 = 300µL of NFW to make 100micromolar (µM) stock solution.

2.2.

Add the required volume of nuclease free water, pulse vortex and spin down. This is the primer/probe stock with 100micromolar (µM) concentration.

2.3.

Store at -20°C for long term storage.

Primer-probe dilution

3.

Prepare a working stock from 100micromolar (µM) stock solution.

3.1.

In a fresh tube add 10µL of 100micromolar (µM) primer/probe stock and 90µL of nuclease free water to give 100µL of 10micromolar (µM) working primer/probe.

3.2.

Store at 4°C for frequent usage or -20°C for long-term storage.

qPCR controls

4.

Positive control: gBlocks gene fragments corresponding to each gene target is included in qPCR assay to use as positive control.

ABCD
gBlock geneSequence(5'-3')Accession No:bp size
SPA2308ACGATGATGACTGATTTATCGAACAACGACTCTCCCATACAATTTCATTCTTATTGAGAATGCGCTTATGTAATTTATACCCCAGCTCTGAGAGATATCTTTTCAFM200053.1105
ctxATCCGGAGCATAGAGCTTGGAGGGAAGAGCCGTGGATTCATCATGCACCGCCGGGTTGTGGGAATGCTCCAAGATCATCGAAF463401.180
HF183GGGATCATGAGTTCACATGTCCGCATGATTAAAGGTATTTTCCGGTAGACGAT GGGGATGCGTTCCATTAGATAGTAGGCGGGGTAACGGCCCACCTAGTCAACG ATGGATAGGGGTTCTGAGAGGAAGGTCMT464394.1132
wbfO139AGAAGCCAGTCGCAGTAAAGCACTAGGGCGCATGGTGGTACAGCTTAGCCGCATTATGCGAGATGAGCCGGGTGCGGATTTTATGCTGGAAGATGGCGAAB012956.199
tcpA classicGCGTAATGCAGCAGCTAATAAAGCATTTGCAATTTCAGTGGATGGTCTGACACAGGCTCAATGCAAGACACTTATTACCAGTGTCGGTGATATGTTCCCATAM33514.1102
OmpWTCAATGATAGCTGGTTCCTCAACGCTTCTGTGTGGTATGCCAATATTGAAACAACGGCAACCTACAAAGCAGGTGCAGATGCCAAATCCACGGATGTTGAAATCAATCCTTGGGTATTTATGATCGX51948 modified126
wbeO1GTTGAGAAGGGCGGTCTAATAACACCTAAAGAGTTTGCAGAGAAGCTTGCCTCAGCAATGGATAAGGCTCTTGTACGCTTACCAACTCAAGTACCAGACAKC152957.1100
tcpA El-TorATCCTTTCACTGGTACAGCTATGGGGATTTTCTCATTTCCACGAAACTCTGCAGCGAATAAAGCATTCGCAATTACAGTCGGTGGCTTGACKP187623.191

Table4: Sequences used for gBlocks gene fragments

5.

Negative control: 3µL of extraction blank of each batch of extraction.

NTC: Master mix alone used for no template control.

Quantitative PCR

6.

Thaw qPCR reagents and samples on ice and briefly spin it down.

Prepare master mix for each of the 3 primer-probe panels.

7.

[PCR 1] Salmonella Paratyphi A (SPA2308) and ctxA Salmonella Paratyphi A (SPA2308) and ctxA

7.1.

Prepare the master mix as follows for the number of samples, positive and negative controls, NTC and one extra reaction to account for any pipetting error.

AB
REAGENTVOLUME FOR 1 REACTION (μL)
UDG Mix12.5
MgCl21
Rox dye0.05
ctxA F Primer (10 µM)0.5
ctxA R Primer (10 µM)0.5
ctxA Probe (10 µM)0.25
SPA2308 F (10 µM)0.5
SPA2308 R (10 µM)0.5
SPA2308 Probe (10 µM)0.25
NFW5.95

Table5: Mastermix composition for SPA2308 and ctxA gene targets

8.

[PCR 2] Vibrio cholerae_1 PCR Vibrio cholerae _1 PCR

8.1.

Prepare the master mix as follows for the number of samples, positive and negative controls, NTC and one extra reaction to account for any pipetting error.

AB
REAGENTVOLUME FOR 1 REACTION (μL)
UDG Mix12.5
MgCl21
ROX dye0.05
HF183 F Primer (10 µM)0.5
HF183 R Primer (10 µM)0.5
HF183 Probe (10 µM)0.25
wbfO139 F Primer (10 µM)0.5
wbfO139 R Primer (10 µM)0.5
wbfO139 Probe (10 µM)0.25
tcpA classic F Primer (10 µM)0.5
tcpA classic R Primer (10 µM)0.5
tcpA classic Probe (10 µM)0.25
SPC (10 X EGT Control Mix)2.5
NFW2.2

Table6: Mastermix composition for Vibrio cholerae_1 PCR gene targets

Note
SPC is Sample Processing Control, an optimized TaqMan control designed to be used as qPCR DNA extraction and inhibition control. It is detected by Cy5-labelled probe (Cy5-QXL670 Probe) which comes as ready to use primer probe mix.

9.

[PCR 3] Vibrio cholerae_2 PCR Vibrio cholerae _2 PCR

9.1.

Prepare the master mix as follows for the number of samples, positive and negative controls, NTC and one extra reaction to account for any pipetting error.

AB
REAGENTVOLUME FOR 1 REACTION (μL)
UDG Mix12.5
MgCl21
ROX dye0.05
OmpW F Primer (10 µM)0.5
OmpW R Primer (10 µM)0.5
OmpW Probe (10 µM)0.25
wbeO1 F Primer (10 µM)0.5
wbeO1 R Primer (10 µM)0.5
wbeO1 Probe (10 µM)0.25
tcpA El-Tor F Primer (10 µM)0.5
tcpA El-Tor R Primer(10µM)0.5
tcpA El-Tor Probe (10 µM)0.25
NFW4.7

Table7: Mastermix composition for Vibrio cholerae_2 PCR gene targets

10.

For each PCR, aliquot 22 μl of master mix to each required well in a 96-well plate.

Add 3μl of sample, or 3 μl of nuclease free water for negative controls.

11.

Seal the plate with a roller sealer and then centrifuge the plate for 1 min at 2,000g.

12.

Load the plate into Quantstudio7 flex instrument after proper initiation of the instrument. Open QS7 software, then select "New Experiment set up".

13.

Set up the experiment properties with 96-well block, TaqMan reagents, 0.2 ml PCR plate and standard run. Define sample ID and define the targets as described for respective PCR panels. Assign targets and sample ID to each well.

14.

Set up the PCR cycling method as described below.Cycling conditions remain the same for all 3 qPCRs.

ABC
Step ( Hold Stage)TemperatureTime
Reverse Transcription50°C2 MIN
PCR initial heat activation95°C2 MIN
2-step cycling (40 cycles)
Denaturation95°C15 SEC
Combined annealing/extension60°C (data collection step)30 SEC

Start the qPCR by clicking “Run.”

15.

Once the run is complete, adjust the thresholds and baseline if any abnormal baseline at the start or at the end is observed, which may lead to a false-positive curve. Verify if the PC is within the range using the cut-off Ct values chosen from running the standards.

16.

Export the result to excel/csv file and upload both run and csv files.

17.

The threshold for each target can be set such that the PC for that target falls within the pre-defined range obtained with the standard curves.

The sample is considered positive if the amplification curve is appropriate and the Ct value falls below the defined cut-off thresholds for each target.

A separate protocol, provided in the Typhoid ES workspace, serves as an example and can be followed to generate Ct cut-off values:

Generating Ct cut-off values using gBlocks gene fragments

推荐阅读

Nature Protocols
Protocols IO
Current Protocols
扫码咨询