实验方法库
覆盖上万篇生物顶级期刊,专业引领,成就科研速度!
筛选
热门推荐
换一换ProBac-seq, a bacterial single-cell RNA sequencing methodology using droplet microfluidics and large oligonucleotide probe sets
Prosenjit Samanta, Samuel F. Cooke, Ryan McNulty, Sahand Hormoz, Adam Rosenthal
Methods that measure the transcriptomic state of thousands of individual cells have transformed our understanding of cellular heterogeneity in eukaryotic cells since their introduction in the past decade. While simple and accessible protocols and commercial products are now available for the processing of mammalian cells, these existing technologies are incompatible with use in bacterial samples for several fundamental reasons including the absence of polyadenylation on bacterial messenger RNA, the instability of bacterial transcripts and the incompatibility of bacterial cell morphology with existing methodologies. Recently, we developed ProBac sequencing (ProBac-seq), a method that overcomes these technical difficulties and provides high-quality single-cell gene expression data from thousands of bacterial cells by using messenger RNA-specific probes. Here we provide details for designing large oligonucleotide probe sets for an organism of choice, amplifying probe sets to produce sufficient quantities for repeated experiments, adding unique molecular indexes and poly-A tails to produce finalized probes, in situ probe hybridization and single-cell encapsulation and library preparation. This protocol, from the probe amplification to the library preparation, requires ~7 d to complete. ProBac-seq offers several advantages over other methods by capturing only the desired target sequences and avoiding nondesired transcripts, such as highly abundant ribosomal RNA, thus enriching for signal that better informs on cellular state. The use of multiple probes per gene can detect meaningful single-cell signals from cells expressing transcripts to a lesser degree or those grown in minimal media and other environmentally relevant conditions in which cells are less active. ProBac-seq is also compatible with other organisms that can be profiled by in situ hybridization techniques.
AI 解读An MSstats workflow for detecting differentially abundant proteins in large-scale data-independent acquisition mass spectrometry experiments with FragPipe processing
Devon Kohler, Mateusz Staniak, Fengchao Yu, Alexey I. Nesvizhskii, Olga Vitek
Technological advances in mass spectrometry and proteomics have made it possible to perform larger-scale and more-complex experiments. The volume and complexity of the resulting data create major challenges for downstream analysis. In particular, next-generation data-independent acquisition (DIA) experiments enable wider proteome coverage than more traditional targeted approaches but require computational workflows that can manage much larger datasets and identify peptide sequences from complex and overlapping spectral features. Data-processing tools such as FragPipe, DIA-NN and Spectronaut have undergone substantial improvements to process spectral features in a reasonable time. Statistical analysis tools are needed to draw meaningful comparisons between experimental samples, but these tools were also originally designed with smaller datasets in mind. This protocol describes an updated version of MSstats that has been adapted to be compatible with large-scale DIA experiments. A very large DIA experiment, processed with FragPipe, is used as an example to demonstrate different MSstats workflows. The choice of workflow depends on the user’s computational resources. For datasets that are too large to fit into a standard computer’s memory, we demonstrate the use of MSstatsBig, a companion R package to MSstats. The protocol also highlights key decisions that have a major effect on both the results and the processing time of the analysis. The MSstats processing can be expected to take 1–3 h depending on the usage of MSstatsBig. The protocol can be run in the point-and-click graphical user interface MSstatsShiny or implemented with minimal coding expertise in R.
AI 解读A template wizard for the cocreation of machine-readable data-reporting to harmonize the evaluation of (nano)materials
Nina Jeliazkova, Eleonora Longhin, Naouale El Yamani, Elise Rundén-Pran, Elisa Moschini, Tommaso Serchi, Ivana Vinković Vrček, Michael J. Burgum, Shareen H. Doak, Mihaela Roxana Cimpan, Ivan Rios-Mondragon, Emil Cimpan, Chiara L. Battistelli, Cecilia Bossa, Rositsa Tsekovska, Damjana Drobne, Sara Novak, Neža Repar, Ammar Ammar, Penny Nymark, Veronica Di Battista, Anita Sosnowska, Tomasz Puzyn, Nikolay Kochev, Luchesar Iliev, Vedrin Jeliazkov, Katie Reilly, Iseult Lynch, Martine Bakker, Camila Delpivo, Araceli Sánchez Jiménez, Ana Sofia Fonseca, Nicolas Manier, María Luisa Fernandez-Cruz, Shahzad Rashid, Egon Willighagen, Margarita D Apostolova, Maria Dusinska
Making research data findable, accessible, interoperable and reusable (FAIR) is typically hampered by a lack of skills in technical aspects of data management by data generators and a lack of resources. We developed a Template Wizard for researchers to easily create templates suitable for consistently capturing data and metadata from their experiments. The templates are easy to use and enable the compilation of machine-readable metadata to accompany data generation and align them to existing community standards and databases, such as eNanoMapper, streamlining the adoption of the FAIR principles. These templates are citable objects and are available as online tools. The Template Wizard is designed to be user friendly and facilitates using and reusing existing templates for new projects or project extensions. The wizard is accompanied by an online template validator, which allows self-evaluation of the template (to ensure mapping to the data schema and machine readability of the captured data) and transformation by an open-source parser into machine-readable formats, compliant with the FAIR principles. The templates are based on extensive collective experience in nanosafety data collection and include over 60 harmonized data entry templates for physicochemical characterization and hazard assessment (cell viability, genotoxicity, environmental organism dose-response tests, omics), as well as exposure and release studies. The templates are generalizable across fields and have already been extended and adapted for microplastics and advanced materials research. The harmonized templates improve the reliability of interlaboratory comparisons, data reuse and meta-analyses and can facilitate the safety evaluation and regulation process for (nano) materials.
AI 解读